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Abstract

The symmetries and conserved quantities of Manton’s modified superconductivity model with
non-relativistic Maxwell–Chern–Simons dynamics (also related to the Quantized Hall Effect) are
obtained in the “Kaluza–Klein type” framework of Duval et al. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Recently [1],1 Manton proposed a modified version of the Landau–Ginzburg theory of
superconductivity. His equations, defined on(2+1)-dimensional non-relativistic space–time
parametrized byxxx andt , read

iγDtΦ = −1
2DDD2Φ − 1

4(λ(1 − |Φ|2))Φ, NLS (1.1)

εij ∂jB = Ji − J T
i + 2κ εij Ej , Ampère–Hall Law (1.2)

2κB = γ (1 − |Φ|2). Gauss’ Law (1.3)

Hereγ > 0, λ > 0 andκ ∈ R are constants,B = εij ∂iAj andEEE = ∇∇∇At − ∂tAAA are
the “statistical” magnetic and the electric fields, respectively, associated with the vector
potential(At ,AAA). The covariant derivatives meanDαΦ = ∂αΦ − iAαΦ; the current is

Jα = 1

2i

[
Φ?DαΦ − Φ(DαΦ)?

]
, (1.4)
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1 Further references are found in [12].
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where α = t, i. The new ingredient is the transport currentJJJ T (a constant
vector).

The matter fieldΦ satisfies hence a non-linear Schrödinger equation, as in the non-
relativistic Chern–Simons theory of Jackiw and Pi [2–5]. The Maxwell term familiar from
the static Landau–Ginzburg theory only enters Ampère’s law, (1.2), and is missing from
Gauss’ law, (1.3). In the absence of a magnetic field and of a transport current, Eq. (1.2)
reduces to the off-diagonal relation between the current and the electric field

Ji = −2κ εij Ej , (1.2’)

which is Hall’s law. The Manton model is in fact closely related to the “Landau–Ginzburg”
theory of the Quantized Hall Effect (QHE) [6–10], and has indeed been used in this context
[11].

The form of the system (1.1)–(1.3) is dictated by the requirement of Galilean covari-
ance [1,12]; it exemplifies a Galilei-invariant electromagnetic theory of the magnetic type
[13–15].

To make the magnetic field vanish at infinity, the particle density,% = |Φ|2, has to tend
to 1 rather than to 0 whenr → ∞ by Eq. (1.3). Similarly, it follows from Eq. (1.2) that
JJJ → JJJ T at infinity.

The system (1.1)–(1.3) admits a surprising six-parameter algebra of symmetries [12,16].
The first three are ordinary space and time translations. The three further symmetries (related
to those in a constant external electromagnetic field [17–21] and called “hidden boosts and
rotations”) are more subtle, see Section 5.

The associated conserved quantities were obtained in [12,16]. The procedure is somewhat
tricky in that the naive energy–momentum tensor is not gauge-invariant and the associated
integrals do not converge. It has therefore to be “improved”. It is natural to inquire about
the possibility of obtaining these improved expressions from first principles.

Another surprise is that the momenta satisfy the anomalous commutation relation [22]

{p1, p2} = γ

∫
B d2x = 2πnγ, n ∈ Z, (1.5)

rather then commute, as ordinary translations do. This relation is very important, since it
can be used to explain the quantization of the Hall conductivity in the QHE [9,10].

In this paper, we explain these results using the “non-relativistic Kaluza–Klein-type”
framework of Duval et al. [23,24]. The well-known relativistic case is only recalled to
motivate our arguments; proofs are only provided in the non-relativistic context, which is
our main concern here.

In the approach of [23,24], the(2+1)-dimensional dynamics is lifted to a four-dimensional
Lorentz manifold(M, g) carrying a covariantly constant light-like vectorξ , referred to as
the “Bargmann space”. Physics in “ordinary” space is recovered by reduction alongξ .
Owing to the singular character of the projection, our systems defined on Bargmann space
can only partially be derived from an action principle, forcing us to work mostly with the
equations of motion.
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In the simplest case (Case A), the Bargmann space is Minkowski space, and we get
a variant of the Jackiw–Pi theory [2–5,25]. In Case B, the external fields get included
into the metric; the reduction yields the Chern–Simons [17–21,26] theory in external
fields. Our clue is that the transport terms behave precisely as external electric and mag-
netic fields, so that the metric B also describes the Manton model! Then our Theorem 1
states that anyξ -preserving isometry of Bargmann space is a symmetry for the reduced
system.

In case A, theξ -preserving isometries (resp. conformal transformations) ofM form the
extended Galilei (resp. Schrödinger [27–29]) group [23,24]. For metric B, the conformal
transformations form the “hidden Schrödinger algebra” [17–21,26]. Describing the symme-
tries of the Manton model requires hence selecting the isometries of metric B. These form
a seven-parameter group, namely those found in [12], augmented with the vertical trans-
lations. Thus, the “hidden” symmetries are also “geometric”, but with respect to another
geometry.

Interestingly, the problem of lifting the symmetries from ordinary space–time to Bargmann
space amounts to studying the symmetries in a fixed background field, as discussed by
Forgács and Manton [30], and by Jackiw and Manton [31].

The Bargmann framework also allows us to derive a symmetric, conserved energy–
momentum tensor. Then the geometric version of Noether’s theorem (Theorem 3) associates
a conserved quantity to each Killing vector of Bargmann space, yielding, without further
“improvement”, the same conserved quantities as found before in [12,16]. These facts
underline the importance of finding the “good” lift of the space–time transformations.

Our notation are as follows. On ordinary space–timeQ: labelα, β = t, i. VectorsX =
(Xα); the generators of the Galilei group: upper-case letters, e.g.,PPP = (P i), GGG, i = 1, 2,
etc.; generators of the hidden Galilei group: upper-case calligraphic letters, e.g.,PPP, GGG.
Fields: upper-case letters, e.g.,Aα, Fαβ . Conserved quantities: lower-case letters, e.g.,n,
h, pi, i = 1, 2, etc. A general Lorentz 4-manifold:(M, gµν). On a Bargmann space(M̂,
ĝµν, ξ) with special metric (2.2) below: “hat” and labelµ, ν = t, i, s. VectorsX̂ = (X̂µ).
For example, lift of an ordinary translation:P̂PP = (P̂ µ); lift of a hidden translation̂PPP. Fields:
lower-case letters; e.g.,aµ, fµν , etc. On Minkowski spacẽM, g̃µν : “tilde” and labelµ, ν.
For example, lift of an ordinary translation:P̃PP .

2. “A Kaluza–Klein” framework for Maxwell–Chern–Simons theory

2.1. General theory

In relativistic Kaluza–Klein theory [32–34], electromagnetism is described by a Lorentz
manifoldM; ordinary (relativistic) space–time is the quotient ofM by aspace-likefibration.
To get electromagnetism in the plane, we choseM to beR4 with coordinatesxµ (µ = α, 5,
α = 0, 1, 2) and the metric

(g̃αβ + Aext
α Aext

β ) dxα dxβ + dx5(Aext
α dxα + dx5), (2.1)
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whereg̃αβ is the (Minkowski) metric on(2 + 1)-dimensional ordinary space–timeQ; Aα

represents the electromagnetic vector potential. The space-like direction to be factored out
is generated by the Killing vectorξ = ∂5.

Gauge theory admits another geometric description, namely using the language of fiber
bundles [35–37]. The external electromagnetic field is represented by a connection one-form
$ on a principalR (or U(1)) bundleM over space–timeQ, whose curvature is the electro-
magnetic two-form, d$ = F . The vector potentialAα is the pull-back of the connection
form $ by a section of the bundle. This approach makes no reference to any metric, and is
therefore valid in both the relativistic and the non-relativistic context.

A Kaluza–Klein type framework for non-relativistic physics was given in [23,24]. Let us
consider a 4-manifoldM, which is endowed with a Lorentz metric of signature(−, +, +, +)

and also carries a covariantly constant null vector,ξ = (ξµ). The quotient ofM by the flow
of ξ , denoted byQ, is a(2+1)-dimensional manifold with a Newton–Cartan structure, i.e.,
a non-relativistic space–time [23,24]. As found long time ago [38–40], the most general
“Bargmann” 4-space has the form

gij dxi dxj + 2 dt [ds + (1/γ )Aext
i dxi ] + 2(1/γ )Aext

t dt2.

Here the “transverse metric”gij as well as the “vector” and “scalar” potentialsAext
i and

Aext
t , are functions of “Galilean time” and “position”,t andxxx. ξ = ∂s is a covariantly

constant null vector.
In this paper, we only consider Brinkmann metrics with flat transverse space

ĝµν dxµ dxν = δij dxi dxj + 2 dt [ds + (1/γ )Aext
i dxi ] + 2(1/γ )Aext

t dt2. (2.2)

All such metrics can be viewed as defined on the same manifold (topologicallyR4), obtained
by distorting the “vertical” components of the Minkowski space metric.

ĝµν = g̃µν + ηµν, g̃µν dxµ dxν = dxxx2 + 2 dt ds,

ηµν dxµ dxν = 2Aext
α dxα dt. (2.3)

The fields

EEEext = −∂tAAA
ext + ∇∇∇Aext

t , Bext = ∇∇∇ × AAAext, (2.4)

have been interpreted as external electric and magnetic fields, respectively [23,24].
In the relativistic case, the fiber bundle approach can be recovered from that of Kaluza–

Klein: the total space,M, is itself a fiber bundle with typical fiber generated byξ = ∂5,

$ = iξ g ≡ g(ξ, ·), (2.5)

is a connection form on this bundle. Contracting (2.1) withξ = ∂5 yields indeed the standard
expression$ = Aext

α dxα + dx5.
In the non-relativistic case the formula (2.5) breaks down, because the vertical fibration is

light-like: $(ξ) = ξµξµ = 0, contradicting the condition$(ξ) = 1 required for a connec-
tion form [35]. Put another way, the tangent space to the bundle cannot be decomposed into
the direct sum of a horizontal subspace and the vertical subspace sinceξ is itself horizontal.
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2.2. Non-relativistic Chern–Simons theory

Let us now present our non-relativistic Maxwell–Chern–Simons field theory onM. Let
f = 1

2fµν dxµ ∧ dxν be a closed two-form andj = (jσ ) a vector onM. (Locally
fµν = 2∂[µaν] .) Slightly generalizing the procedure proposed in [25], we
(I) posit the generalized Maxwell–Chern–Simons Field–Current Identities (FCI) on
Bargmann space

√−g εµνρσ ξρ∇ωf ωσ + 2κfµν = −√−g εµνρσ ξρjσ , (2.6)

where∇µ is the covariant derivative w.r.t. the metricĝµν ;
(II) consider the non-linear wave equation for a scalar fieldφ onM,

DµDµφ − R

6
φ − 2

δU

δφ?
= 0, (2.7)

whereDµ is the metric and gauge covariant derivative,

Dµ = ∇µ − iaµ, (2.8)

andR is the scalar curvature of the Bargmann spaceM, andU = U(|φ|2) is some scalar
potential;

(III) couple Eqs. (2.6) and (2.7) according to

jµ = 1

2i

[
φ?Dµφ − φ(Dµφ)?

]
. (2.9)

Requiringφ to be equivariant,

ξµDµφ = iγ φ, (2.10)

this system of equations will project into one onQ. Indeed, contracting Eq. (2.6) with
the vertical vectorξ , the antisymmetry implies thatfµνξ

ν = 0. But fµν also satisfies,
by construction, the homogeneous Maxwell equations∂[ρfµν] = 0. Therefore, the Lie
derivative of the two-formf by ξ vanishes,Lξf = 0. It follows that the field strength
f is the lift to M of a two-formF = 1

2Fαβ dxα ∧ dxβ on Q. Similarly, using thatξ
is covariantly constant, it follows from Eq. (2.6) thatLξj = 0. The currentjµ projects
therefore to one onQ we denote byJ = (J α). Eq. (2.6) descends therefore toQ, providing
us with Maxwell–Chern–Simons equations in(2 + 1) dimensions.

Finally, owing again to equivariance and the form of the metric, the non-linear wave
equation (2.7) projects to one onQ.

For simplicity, we only consider the symmetry-breaking fourth-order potential

U(|φ|2) = λ

8

(
1 − |φ|2

)2
. (2.11)

2.3. Examples

Let us now consider some examples.
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Case A. The simplest choice is Minkowski space,M = M̃,

g̃µν dxµ dxν = (dxxx)2 + 2 dt ds. (Minkowski space) (2.12)

Then, settingΦ = e−iγ sφ, our Eqs. (2.6) and (2.7) reduce to those of Jackiw and Pi [2–5]
with an additional magnetic Maxwell term and a symmetry breaking potential,

B = − γ
2κ

%,

εij ∂jB = Ji + 2κ εij Ej ,

iγDtΦ =
[
−1

2 DDD2 − λ
4(1 − |Φ|2)

]
Φ,

(2.13)

where% = Φ∗Φ andJJJ = (1)/(2i)[Φ∗DDDΦ − Φ(DDDΦ)∗] andDα = ∂α − iAα.
Case B. Let us now consider the special Brinkmann metricĝµν in (2.2) onR4, with

Aext
i = 1

2εij x
jBext, Bext = const,

Aext
t = xxx · EEEext, EEEext = const.

(2.14)

Such a metric has vanishing scalar curvature,R = 0. Since the only non-vanishing compo-
nents of the inverse metric areĝij , ĝis = −Aext

i , ĝss = −2Aext
t − (Aext)i andĝts = 1, we

find that the extra components of the metric simply modify, after reduction, the covariant
derivative as

Dα ≡ ∂α − iAα − iAext
α = Dα − iAext

α , (2.15)

whereα = t, i. Our equations become hence

B = − γ
2κ

%,

εij ∂jB = Ji + 2κ εij Ej ,

iγ (∂t − iAt − iAext
t )︸ ︷︷ ︸

Dt

Φ =

−1

2(∇∇∇ − iAAA − iAAAext︸ ︷︷ ︸
DDD

)2Φ − λ
4(1 − |Φ|2)


Φ.

(2.16)

The fieldsB andEEE here only involve the “statistical gauge field”Aα but not the background
terms:B = εij ∂iAj , EEE = ∇∇∇At − ∂tAAA. The external field enters the non-linear Schrödinger
equation, though, and also change the current (1.4),Jα = Jα − Aext

α |Φ|2. Consistently
with the interpretation ofEEEext andBext in [23,24], these equations describe non-relativistic
Chern–Simons vortices in a constant external electric and magnetic field [17–21] (again
with an additional magnetic Maxwell term).

This same system admits also another interpretation. For

Aext
t = 1

2κ
xxx × JJJ T, Aext

i = − γ

4κ
εij x

j , (2.17)

we get

Bext = γ

2κ
, Eext

i = −
εij J

T
j

2κ
. (2.18)

SettingAα = Aα + Aext
α , we have

B = B + γ

2κ
, Ei = Ei − εij J

T
j , (2.19)
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so that, in terms of the curly quantities, Eq. (2.16) become those of Manton, (1.1)–
(1.3)!

3. Variational aspects

It is natural to ask whether the posited field equations come from a variational principle.
A system similar to ours was considered by Carroll et al. [41]. Adapting their approach
to our case, let us start with a Lorentz 4-manifoldM, endowed with a covariantly con-
stant vectorξµ, and add tentatively a Chern–Simons type term to the usual matter —
Maxwell–Lagrangian,L = L1 + L2, where

L1 = 1

4
fµνf

µν + 1

2
(Dµφ)∗ Dµφ + R

12
|φ|2 + U(|φ|2),

L2 = κ

2
εµνρσ ξµaνfρσ . (3.1)

The resulting field equations read

∂µf µν + κ
√−g εµρσνξµfρσ = δ

δaν

(L1) = −jν, (3.2)

supplemented with the matter equation (2.5).
In order to relate this theory to one in one less dimensions, let us assume thatφ is

equivariant, (2.10), and thatfµν is the lift fromQ of a two-formFαβ . 2 Hencefµνξ
µ = 0.

The field equation (3.2) is similar to those in (2.6), except for the “wrong” position of
theεµνρσ tensor. To compare the two theories, let us transfer theεµνρσ to the other side of
Eq. (3.2) and contract withξρ to get, usingfµνξ

µ = 0,

√−g εµνρσ ξρ∂τ f
τσ + κ(ξρξρ)fµν = √−g εµνρσ ξρjσ . (3.3)

If ξ is space-like(or time-like), it can be normalized asξµξµ = ±1. Then Eq. (3.3) is
(possibly up to a sign) our Eq. (2.6). In the space-like case, e.g., we get a well-behaved
relativistic model: the quotient is a Lorentz (or a Euclidean) manifold. LetM be, e.g.,
Minkowski space with metric dx2 + dy2 − dz2 + dw2. The vectorξ = ∂w is space-like
and covariantly constant. The quotient is(2+1)-dimensional Minkowski space with metric
dx2 + dy2 − dz2 and Eqs. (2.6) and (2.7) project to

∂αFαγ + κ εαβγ Fαβ = J γ ,

DαDαΦ − 2 δU
δΦ? = 0.

(3.4)

These are indeed the correct Maxwell–Chern–Simons and Klein–Gordon equations for a
relativistic model in(2 + 1)-dimensional flat space [42].

If, however,ξ is light-like, ξµξµ = 0, then thefµν has avanishingcoefficient, and Eq.
(3.3) doesnot reproduce those in (1.2) and (1.3).

2 In the approach presented in I, this follows automatically from the field equation.
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In conclusion, (3.1) is a correct Lagrangian in the relativistic case but fails to work in the
light-like case, which is precisely our case of interest here. It is worth remarking, however,
that the non-linear wave equation, (2.7), is correctly reproduced by variation of the “partial
action”

S =
∫

M

{
1

4
fµνf

µν + 1

2
(Dµφ)∗ Dµφ − 1

2
jT
µjTµ + R

12
|φ|2 + U(|φ|2)

}√−g d4x.

(3.5)

In order to make the integral converge, we have added here the (constant) transport term to
the Lagrange density

−1
2jT

µjTµ

, where (jT)t = γ (jT)i = (J T)i , (jT)s = 0.

In fact, (Dµφ)∗Dµφ → jT
µjTµ

asr → ∞. We also included a Maxwell term for later
convenience, see Section 6.

4. Space–time symmetries

4.1. Symmetries in ordinary space

Let us now discuss the space–time symmetries. In the Forgács–Manton–Jackiw ap-
proach [30,31], (infinitesimal) symmetries are represented by vector fieldsX = (Xα) on
space–time. In the relativistic context considered by the above authors, these are typically
Killing vectors of the space–time metric, which leave the kinetic term invariant and hence
act as symmetries for a free system. In the presence of an external electromagnetic field,
however, only those vector fields remain symmetries for which the change of the external
vector potentialAext

α can be compensated by a suitable gauge transformation,

LXAext
α = ∂αW, α = i, t, (4.1)

for some compensating functionW(xxx, t). (Owing to the gauge freedom, strict invariance,
LXAext

α = 0, would be too restrictive.) Using the identity

(LXA)α = ∂α(AβXβ) + XβFβα,

valid for any one-form, this relation is readily seen to be equivalent to

F ext
αβ Xβ = ∂αΥ, Υ = Aext

α Xα − W. (4.2)

Note that whileAα andW are gauge-dependent,Υ represents the gauge-independent re-
sponse of the field to a symmetry transformation [30,31]. The response functionΥ also
appears in the “spin from isospin contribution” in the associated conservation law, see
Section 6.
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When several symmetries are present in the theory, they only form a closed algebra when,
for any two symmetriesX1 andX2 and compensating functionsW1 ≡ WX1 andW2 ≡ WX2,
the additional relations

LX1W2 − LX2W1 = W[X1,X2], (4.3)

or, equivalently,

F ext
αβ Xα

1X
β

2 = Υ[X1,X2], (4.3′′)

are also satisfied. Expressed using the transport terms, our conditions (4.1) and (4.3) require

XXX × JJJ T = ∂tΥ, εij (X
tJ Tj − XjJ Tt

) = ∂iΥ. (4.4)

4.2. The bundle picture

The ordinary space approach of Forgács et al. can be translated into fiber bundle language
[36,37]. A symmetry of the external electromagnetic field is a vector fieldX̂ = (X̂µ) on
the bundle which is invariant w.r.t. the action of the structure group on the fibers and which
also leaves the connection form invariant,

L
X̂
$ = 0. (4.5)

In terms of a local sections : Q → M, this condition means precisely (4.1) whereAext =
s?$ . The lift admit the gauge-invariant expression

X̂ = X̄ − Υ ∗, (4.6)

whereX̄ is the horizontal lift ofX, $(X̄) = 0, andΥ ∗ denotes the fundamental vectorfield
[35] associated toΥ . This latter can be recovered from the lift according to

Υ = −$(X̂), (4.7)

since$(Υ ?) = Υ . The consistency condition (4.3) means that the lifts close into a Lie
algebra which acts on̂M

[X̂1, X̂2] = ̂[X1, X2]. (4.8)

Eq. (4.3’) provides in fact a cohomological obstruction for lifting the Lie algebra isomor-
phically from the base to the bundle [43,44].

4.3. The Kaluza–Klein approach

In the relativistic case, the symmetry conditions (4.1) or (4.2) are readily seen to be
equivalent to requiring that the lift̂X be an isometry of the Kaluza–Klein metric,

L
X̂
g = 0. (4.9)
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In fact,L
X̂
$ = L

X̂
(iξ g) = iξ (LX̂

g). Then the gauge-invariant response of the field to a
symmetry transformation is recovered as

Υ = gµνξ
µX̂ν = ξνX̂

ν. (4.10)

Let us now turn to the non-relativistic case. The role of space–time isometries is played
here by Galilei transformations.3 However, since we are only interested in the potential
(2.13) which manifestly breaks the conformal transformations, we focus our attention to
the isometries. Thus, let̂X = (X̂µ) be a Killing vector of the Bargmann metriĉgµν which
also preserves the vertical vectorξ ,

L
X̂
ĝ = 0, [X̂, ξ ] = 0. (4.11)

Whenξ is factored out, such a vector projects onto an (infinitesimal) “Galilean isometry”
of space–timeQ, we denote (with some abuse of notation) byX = (Xα), (α = t, i). In our
case this simply means a Galilei transformation of(2 + 1)-dimensional space–time. (The
general case is discussed in [23,24].) Conversely, an infinitesimal Galilei transformation
Xα on flat space–time,Q lifts, by construction, as the Killing vector̃Xµ on Minkowski
spaceM̃. What about a more general Brinkmann metric (2.2)? Let us assume thatXα lifts
as a Killing vectorX̂µ to (M̂, ĝ). SinceX̃µ and X̂µ are lifts toR4 of the same Galilei
transformation

X̂µ = X̃µ + Yµ, (4.12)

whereYµ is vertical. In our preferred local frame, we denote the only non-vanishing com-
ponent ofYµ by W , Yµ = −Wξµ. The Lie derivative of the Brinkmann metric (2.2) is
hence

(L
X̂
ĝ)µν = (L

X̃
g̃)µν + X̃ρ∂ρηµν + ηµρ∂νX̃

ρ + ηρν∂µX̃ρ − g̃µs∂νW − g̃sν∂µW

−ηµs∂νW − ηsν∂µW.

Here(L
X̃
g̃)µν = 0, sinceX̃ is Killing for Minkowski. The vanishing of(L

X̂
ĝ)µν requires

thus

X̃ρ∂ρηµν − δµo∂νW − δνo∂µW + ηµρ∂νX̃
ρ + ηρν∂µX̃ρ = 0. (4.13)

This relation is automatically satisfied with the exception of the components(t, α), for
which it requires

X̃β∂βAext
α + Aext

β ∂αX̃β = ∂αW.

On the LHS, here we recognize the Lie derivative ofAext
α w.r.t. the “Galilean isometry”

X = (Xα), which is hence a symmetry for the external electromagnetic field in the sense
of Forgács–Manton–Jackiw [30,31], as anticipated by the notation.

3 For the purely quartic potentialU = − 1
8(λ|φ|4), the Chern–Simons system is symmetric with respect to

“non-relativistic conformal transformations” [2–5,25,27–29].
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5. Symmetries of the field-theoretical system

Now we prove the following.

Theorem 1. Anyξ -preserving isometry of Bargmann space is a symmetry of our coupled
system of equations (2.6) and (2.7).

By a symmetry we mean here a transformation which carries a solution into some other
solution of the equations of motion.

Our theorem can be shown along the same lines as in [25]. Let us first consider the
non-linear wave equation (2.7). It is easy to see that transforming the fields as

δφ = L
X̂
φ, δaµ = L

X̂
aµ,

the new fields

φ∗ = φ + δφ, a∗
µ = aµ + δaµ,

are still solutions of (2.7) for all isometrieŝXµ of (M̂, ĝ).
Next, the equivariance condition (2.10) plainly requiresX̂µ to beξ -preserving. Then the

current equation (2.6) behave also correctly.
Finally, let us consider the Chern–Simons equation (2.6). Using

δfµν = L
X̂
fµν = fµρ∂νX̂

ρX̂ + fσν∂µX̂σ + X̂ρ∂ρfµν,

Eq. (2.6) becomes, forf ∗
µν = fµν + δfµν ,

2κf ∗
µν = −√−gεµνρσ ξρ(jσ∗ + ∇ωf ων∗),

i.e.,
√−gεµνρσ ξρ∇ωf ων∗ + 2κf ∗

µν = −√−gεµνρσ ξρjσ∗,

as required.
To end the general theory, let us point out that Bargmann-conformally related Bargmann

manifolds share the same symmetries. This is explained by the geometric version [26]
of the “export–import” procedure [17–21], originally due to Niederer [45]. Let us in-
deed consider two Bargmann spaces(M̂, ĝ, ξ̂ ) and(M̃, g̃, ξ), 4 and assume that they are
Bargmann-conformally related, i.e., there is a differentiable mapΨ : M̂ → M̃ such that

Ψ ∗g̃ = Ω2ĝ, Ψ∗ξ̃ = ξ̂ , (5.1)

whereΩ(t,xxx) is some positive function. Then, the image byΨ of anyξ -preserving con-
formal vectorfieldX̂ν on M̂,

(Ψ̃∗X)
µ = ∂x̃µ

∂x̂ν
Xν, (5.2)

4 Note thatξ̂ = ξ̃ = ∂s = ξ generates the vertical translations we denote also byN .
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is aξ̂ -preserving conformal vectorfield oñM. (The image of a Killing vector for̂g may not
be Killing for g̃, though.) The algebraic structure is preserved by the “exportation”

Ψ∗[X(1), X(2)] = [Ψ∗X(1), Ψ∗X(2)]. (5.3)

5.1. Examples

Let us again consider our examples.
Case A. Theξ = ∂s-preserving conformal vectors of Minkowski space

X̃µ =

 −χt2 − ρt − ε

Ω(xxx) − (1
2ρ + χt)xxx + tβββ + δδδ

1
2χ |xxx|2 − βββ · xxx + η


 , (5.4)

whereΩ ∈ so(2), βββ,δδδ ∈ R2, ε, χ, ρ, η ∈ R, interpreted as rotation (̃R), boost (G̃), space
translation (̃P ), time translation (̃H ), expansion (̃K), dilatation (D̃) and vertical translation
(N ). Calculating the commutation relations shows that this nine-dimensional Lie algebra is
indeed thecentrally extended Schrödinger algebra. The central extension shows up in the
commutator of translations with boosts

[translationi︸ ︷︷ ︸
P̃i

, boostj︸ ︷︷ ︸
G̃i

] = −δij (vertical translation︸ ︷︷ ︸
N

). (5.5)

Projecting the algebra (5.4) intoQ (which amounts to keeping just the first two components),
we get the eight-dimensional Schrödinger algebra of [27–29]: the central extension is lost
under projection.

Theξ -preserving Minkowski space isometries form a seven-dimensional algebra, namely
the planarcentrally extended Galilei algebra(also called the Bargmann algebra), consisting
of rotations, boosts, spatial and time translations as well as “vertical” translations (transla-
tions alongξ ), given by (5.4) withχ = ρ = 0. Projecting theξ -preserving Killing vectors
into Q, we get the planar Galilei algebra with six generators, whose commutation rela-
tions differ from those on Bargmann space in that ordinary space boosts and translations
commute.

The potential (2.11) breaks the conformal transformations to isometries. Then Theorem
1 implies that the extended Galilei algebra is symmetry for the system (2.13).

Case B. The conformal vectors of metric B form again a nine-dimensional Lie algebra,
which is algebraically isomorphic to the Schrödinger algebra. This can either be shown
by a lengthy direct calculation, or be derived by the “export–import” procedure [17–21]
explained above. Consider the mapping

Ψ (t,xxx, s) = (T ,XXX, S),

presented in Eq. (A.1) in Appendix A, constructed of (i) Niederer’s transformation [45]
which takes the free case to an oscillator, followed by (ii) a rotation which carries the
oscillator into a uniform magnetic field, and (iii) followed again by a boost which creates



254 M. Hassaïne, P.A. Horv́athy / Journal of Geometry and Physics 34 (2000) 242–262

a non-zero electric field. ThenΨ carries the Bargmann space(M̂, ĝ, ξ) of Case B into
Minkowski space(M̃, g̃, ξ) in a ξ -preserving manner.

The image by the inverse mappingΨ −1 of the generators (5.4)̃Xµ of the Schrödinger
group of Case A is a nine-dimensional algebra defined on the same manifoldR4, made
of ξ̂ (= ξ)-preserving conformal vectors w.r.t. the metricĝµν of Case B. By (5.3), these
generators satisfy by construction the same commutation relations as their pre-images. We
call it therefore “the hidden Schrödinger algebra”. These formulae (presented in Appendix
A) are rather complicated but nevertheless necessary to establish the crucial relations (5.7)
and (5.9) below. These latter provide in turn the “good” lifts (5.8) and (5.10), respectively.

For the quartic potential−λΦ4, all conformal generators would act as symmetries
[17–21,26]. For the symmetry-breaking potential (2.11), only isometries, i.e., solutions
of the Killing equation

L
X̂
ĝ = 0, (5.6)

qualify, though. These are, first of all “hidden translations”,P̂PP, “hidden boosts”,̂GGG, “hidden
rotation”,R̂ and vertical translation (listed in Eq. (A.2) in Appendix A).

Some of the generators can be replaced by more familiar expressions, though. A certain
combination of “hidden translations”, “hidden boost” projects in fact to ordinary translations

(ordinary translation)i︸ ︷︷ ︸
P̂i

= (“hidden translation”)i︸ ︷︷ ︸
P̂i

+ γ

4κ
εij (“hidden boost”)j︸ ︷︷ ︸

Ĝj

, (5.7)

showing that we could have traded either the hidden translations or the hidden boosts for
ordinary translations and vice versa. The lift to(M̂, ĝµν) of ordinary translationsPPP is
therefore

P̂PP =




0
δδδ

−δδδ × xxx

4κ
− δδδ · JJJ T

γ
+ t

2κγ
δδδ × JJJ T


 . (5.8)

Some combination of conformal generators can still be Killing. A look on the explicit
expressions (A.4)–(A.6) shows that this happens indeed for

(hidden time translation)︸ ︷︷ ︸
Ĥ

+ (1
2Bext)2 × (hidden expansion)︸ ︷︷ ︸

K̂
− (1

2Bext) × (hidden rotation)︸ ︷︷ ︸
R̂

, (5.9)

which project in fact to anordinary time translation, H . This latter lifts therefore to the
metric of Case B as
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Ĥ =




−ε

0

−1
2ε

(
JJJ T

γ

)2


 . (5.10)

Let us note that the formulae referred to above are only valid in the rest frameJJJ T = 0; the
general formulae can be obtained by a boost.

Finally, the only solutions of the Killing equation (5.6) are combinations of these gen-
erators. The conformal vectors ofĝµν and of g̃µν are in fact in bijection by means of
the “export–import” map (A.1). But on Minkowski space, the only Bargmann-conformal
vectors are those in the Schrödinger algebra. Collecting our results, we state the following.

Theorem 2. The ξ -preserving isometries of the Bargmann-space of Case B form the
seven-dimensional Lie algebra, generated by ordinary space(P̂ ) and time(Ĥ ) translations,
vertical translations(N ), hidden rotations(R̂) and hidden boosts(Ĝ). Their commutation
relations read[

Ĝi , Ĝj

]
= 0,

[
P̂i , P̂j

]
= − 1

2κ
εijN,

[
P̂i , Ĝj

]
= δijN,[

Ĝi , R̂
]

= εij Ĝj ,
[
P̂i , R̂

]
= εij P̂j ,[

Ĥ , R̂
]

= 0,
[
Ĥ ,Gi

]
= P̂i ,

[
Ĥ , P̂i

]
= 0.

(5.11)

(The vertical translation,N , commutes with all generators.) These are the commutation
relations of the extended Galilei group, with the exception of that, unlike ordinary transla-
tions, the lifted translations do not commute. These latters do not form hence a subalgebra
on their own but belong rather to a three-parameter subalgebra identified as the Heisenberg
algebra, i.e., the central extension of space–time translations with the vertical translation.

Projecting these vector fields into ordinary space–time, we recover the six symmetries
found in [12]. By (5.3), the projections satisfy the same commutation relation (5.11), except
for that the central extension is lost under the projection,N → 0.

5.2. The lifting problem

Conversely, let us start with the projected vectorfields and lift them to the Bargmann
space w.r.t. the metriĉgµν . The lifts have non-trivial fourth components, which come from
the condition that the transport terms (alias external fields) be symmetric w.r.t. the action
on ordinary space–time. Let us illustrate this point on the example of the ordinary space
translations. Each ofP1 = ∂1 andP2 = ∂2 is a symmetry: the condition (4.2) is verified
with

Υi = − 1

2κ
εij (γ xj − tJT

j ) + Ci, (5.12)

whereCi is an arbitrary constant. Each of the translations can be lifted thereforeindividually
to Bargmann space. No choice of the constantsCi allows to lift thealgebraof planar trans-
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lations isomorphically, though, since this is forbidden by the cohomological obstruction
[43,44] referred to above. Condition (4.4) would require in fact

F ext
αβ P α

1 P
β

2 = Bext ≡ γ

2κ
6= 0.

But Υ0 = 0 sinceP1 andP2 commute; a contradiction.
According to (4.1) (or (4.2)), the lift of each symmetry is only unique up to a constant.

The ambiguity can be eliminated by requiring that the algebraic structure be (as much as
possible) preserved. For example, the Lie bracket

[P̂1,R] = P̂2,

fixes the constant in̂P2, etc. Note that the constant in the lift of time translations isnot
fixed as long as we only consider the isometries, becauseĤ is not the Lie bracket of any
two isometries, cf. (5.11). For fixing its constant, we must consider the isometries as a
subalgebra of the conformal vectors. Then the commutation relation in (A.7) in Appendix
A do fix Ĥ uniquely, as in (5.10), upon use of (5.9). Remarkably, the “good lifts” coincide
with those obtained using the “export–import” procedure above. Fixing the lifts plays, as
we explain in Section 6, an important role in deriving the conserved quantities.

6. Conserved quantities

The lack of a variational principle forces us to use a mixed approach, presented in [25].
We only consider Case B, since Case A has been discussed in [25]. Applying the method
of [46] to the “partial action”S (3.5), yields the symmetric energy–momentum tensor

ϑµν = 2
δS

δĝµν
, (6.1)

which also satisfies∇µϑµν + jµf µν = 0. Using our FCI (2.6), we see that the second term
vanishes owing to the antisymmetry. The tensorϑµν is hence itself conserved

∇µϑµν = 0. (6.2)

Ourϑµν is not traceless, though, since the theory isnotconformally symmetric.
Let X̂µ now be a Killing vector of some Brinkmann metricĝµν , and consider the current

kµ = ϑµ
ν X̂ν, (6.3)

wherekµ is gauge-invariant by construction. Furthermore

∇µ(ϑµ
ν X̂ν) = (∇µϑµ

ν )X̂ν + 1
2ϑµνL

X̂
gµν = 0,

sinceLXgµν = 0. The currentkµ is therefore conserved,∇µkµ = 0. If X̂µ is also
ξ -preserving, one can show that the current(kµ) projects into a three-current

(Kα) = (Kt ,KKK), (6.4)

on ordinary space–time,Q. The projected current is thus also conserved. Hence we have
the following.
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Theorem 3. For each isometrŷX , the quantity5

QX =
∫

ϑµνX̂
µξν d2xxx, (6.5)

is conserved, provided all currents vanish at infinity.

Remembering that in a local frame the liftX̂µ is decomposed aŝXµ = (Xα, −W) =
(Xα, −Aext

α Xα + Υ ), we get the following.

Corollary. The conserved quantities admit the gauge-invariant decomposition

QX =
∫

[ϑαsX
α − (Aext

α Xα)ϑss ]︸ ︷︷ ︸
ϑµνX̄µξν

dxxx2 +
∫

Υ ϑss dxxx2, (6.6)

whereΥ is the response of the symmetrical external field to the symmetryX = (Xα) in Eq.
(4.2). The second term represents here the contribution of the symmetric external field to
the conserved quantity, called the “spin from isospin” phenomenon [30,31,37].

Varying the “partial action” (3.5), a rather tedious calculation similar to that in [25] yields
the energy–momentum tensor of the lifted Manton system

ϑµν = 1

3

(
(Dµφ)∗Dνφ + Dµφ(Dνφ)∗

)− 1

6

(
φ∗DµDνφ + φ(DµDνφ)∗

)
+1

6
|φ|2

(
Rµν − R

6
ĝµν

)
− 1

6
ĝµν

(Dσ φ(Dσ φ)∗
)− 1

4
ĝµν(fρσ f ρσ ) − fµρf ρ

ν

−ĝµν

λ

4

(
−1

2
+ 1

3
|φ|2 − 1

6
|φ|4

)
− jT

µjT
ν + 1

2
ĝµν(j

T
σ jTσ

). (6.7)

Since each of the currentsKα in (6.4) vanish at infinity, settingΛ = λ + (γ /κ)2, Theorem
3 yields the conserved quantities

n = γ 2
∫

[1 − |Φ|2] d2xxx = γ
∫ [ B

2κ

]
d2xxx, particle number

pi = γ
∫ [Ji − J T

i |φ|2 +
{
εij

(
xj − t

J T
j

γ

)}
B
]

d2xxx, momentum

h = ∫ [1
2|DDDφ|2 − 1

2|JJJ T|2|φ|2 + Λ
8 (1 − |φ|2)2

+{−(xxx × JJJ T)}B
]

d2x, energy

m = γ
∫ [

xxx × (JJJ − JJJ T|φ|2) − t
γ
JJJ T ×JJJ

+
{
−1

2r2 + t
γ
(xxx · JJJ T) − 1

2

(
t
γ

)2 |JJJ T|2
}
B
]

d2xxx. hidden angular momentum

(6.8)

5 The notationQX is, strictly speaking, an abuse, since the conserved quantity actually depends on the liftX̂µ,
and not only on the space–time vectorXα .
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(The conserved quantities associated with “hidden boosts” are not illuminating and are
therefore not reproduced here.)

These quantities, obtained here from first principles and without any further “improvement”
are identical to those found before [12,16]. Note that in the frameJJJ T = 0 ourM becomes
the ordinary angular momentum in [12,16]. These expressions nicely illustrate the “spin
from isospin” phenomenon [30,31]: the expressions in the curly brackets are theΥ s in the
symmetry definition (4.2).

The Poisson brackets of the conserved quantities (6.8) were calculated in [12]. They ver-
ify the same commutation relations as theξ -preserving isometries of metric B, listed in Eq.
(5.11). The algebraic structure of the conserved quantities reflects hence that of Bargmann
space vectors: in Souriau’s terminology [43], the “moment map” is equivariant for the cen-
trally extended algebra rather than for the projected algebra. For the momenta in particular,
the anomalous commutation relation (1.5) is recovered. (This latter relation can also be
understood by observing that conserved quantities associated to “hidden translations” and
“hidden boosts” satisfy (5.7).)
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Appendix A

The Bargmann-conformal transformationΨ (t,xxx, s) → (T ,XXX, S) which takes Metric B
into that of Minkowski space reads explicitly

T = 2

Bext tan
2

γBext t,

Xk = xk − εkl

Eext
l

Bext t − εkl

(
xl − εlm

Eext
m

Bext t

)
tan

2

γBext t,

S = s + εlmxl

Eext
m

Bext − 1

κ

(
EEEext

Bext

)2

t + 1

2γ
t xxx · EEEext

− 1

2γ
Bext

(
xl − εlm

Eext
m

Bext t

)2

tan
2

γBext t.

(A.1)

The “hidden Schrödinger algebra” is obtained by “importing” the Schrödinger algebra (5.4)
by (A.1). The isometries act on Bargmann space as
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P̂PP = cos
1

4κ
t




0

cos
1

4κ
tΓ1 + sin

1

4κ
tΓ2

− sin
1

4κ
tΓ1 + cos

1

4κ
tΓ2

f




“hidden translations”,

ĜGG = 4κ

γ
sin 1

4κ
t




0

cos
1

4κ
tβ1 + sin

1

4κ
tβ2

− sin
1

4κ
tβ1 + cos

1

4κ
tβ2

g




“hidden boosts”,

R̂ =




0

Ω

(
−x2 + J T

2
t

γ

)
Ω

(
x1 − J T

1
t

γ

)
h




“hidden rotations”,

N =




0
0
0
η


 “vertical translations”,

(A.2)

whereΓΓΓ ,βββ ∈ R2, Ω, η ∈ R. In these formulae,f , g andh are shorthands for the compli-
cated expressions

f = 1

4κ cos
1

4κ
t

[
− sin2

(
t

4κ

)
γγγ × xxx + sin

(
t

4κ

)
cos

(
t

4κ

)
xxx · ΓΓΓ + t

γ
ΓΓΓ × JJJ T

−4κ

γ
cos2

(
t

4κ

)
γγγ · JJJ T + 4κ

γ
sin

(
t

4κ

)
cos

(
t

4κ

)
ΓΓΓ × JJJ T

]
,

g = 1

4κ sin
1

4κ
t

[
− cos2

(
t

4κ

)
xxx · βββ + sin

(
t

4κ

)
cos

(
t

4κ

)
βββ × xxx + t

γ
βββ · JJJ T

+4κ

γ
sin2

(
t

4κ

)
βββ × JJJ T − 4κ

γ
sin

(
t

4κ

)
cos

(
t

4κ

)
βββ · JJJ T

]
,

h = Ω

[
− t

4κγ
(xxx · JJJ T) + 1

4κ

(
t

γ

)2

(JJJ T)2 − xxx × JJJ T

γ

]
.

(A.3)
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“Hidden dilatations” and “hidden expansions” and (somewhat surprisingly) “hidden time
translations” are conformal but not Killing. Settingτ = t/4κ, they read6

Ĥ = hidden time translation=




−γ cos2τ

γ

4κ
cosτ(x1 sinτ − x2 cosτ)

γ

4κ
cosτ(x1 cosτ + x2 sinτ)

− r2γ

32κ2
cos 2τ




. (A.4)

K̂ = hidden expansion=




−
(

16κ2

γ

)
sin2τ

−4κ

γ
sinτ(x1 cosτ + x2 sinτ)

4κ

γ
sinτ(x1 sinτ − x2 cosτ)

r2

2γ
cos 2τ




. (A.5)

D̂ = hidden dilatation= −1

2




4κ sin 2τ

x1 cos 2τ − x2 sin 2τ

x1 sin 2τ + x2 cos 2τ

r2

4κ
sin 2τ




. (A.6)

The commutation relations of the “hidden” quantities are those of the Schrödinger
algebra:

[Gi ,Gj ] = 0, [Pi ,Pj ] = 0, [Pi ,Gj ] = δij

γ
N,

[Gi ,R] = εijGj , [Pi ,R] = εijPj , [H,Gi ] = Pi ,

[H,Pi ] = 0, [H,R] = 0, [H,D] = 2H,

[H,K] = D, [D,K] = 2K, [R,D] = 0,

[R,K] = 0, [D,Gi ] = Gi , [D,Pi ] = −Pi ,

[K,Gi ] = 0, [K,Pi ] = Gi . (A.7)

6 For simplicity, we only present the formulae valid in the rest frameJJJ T = 0. The general expressions (which
would take several pages to write) can be found by boosting those in (A.4).
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